题目内容
【题目】如图,在 Rt△ABC 中,∠C=90°,AC=8cm,BC=6cm,M 在 AC上,且AM=6cm,过点 A(与 BC 在 AC 同侧)作射线 AN⊥AC,若动点 P 从点 A 出发,沿射线 AN 匀速运动,运动速度为 1cm/s,设点 P 运动时间为 t 秒.
(1)经过 秒时,Rt△AMP 是等腰直角三角形?
(2)经过几秒时,PM⊥MB?
(3)经过几秒时,PM⊥AB?
(4)当△BMP 是等腰三角形时,直接写出 t 的所有值.
![]()
【答案】(1)6;(2)2;(3)8;(4)2或
.
【解析】
(1)得出腰时AM=AP,即可得出答案;
(2)根据垂直的定义和同角的余角相等得到∠CBM=∠AMP,证明△CBM≌△AMP,根据全等三角形的性质得到 AP=CM=2,根据题意得到答案;
(3)证明△APM≌△CAB,根据全等三角形的性质得到 AP=CA=8,根据题意得到答案;
(4)分 MB=MP 和 PB=PM 两种情况,根据全等三角形的性质,勾股定理计算即可.
(1)当 Rt△AMP 是等腰直角三角形时,AP=AM=6cm,
∴t=6÷1=6(s),
故答案为:6;
(2)当 PM⊥MB 时,∠BMP=90°,
∴∠BMC+∠AMP=90°,又∠BMC+∠CBM=90°,
∴∠CBM=∠AMP,
在△CBM 和△AMP 中,
,
∴△CBM≌△AMP(ASA),
∴AP=CM=2,
∴t=2,即经过 2 秒时,PM⊥MB;
(3)当 PM⊥AB 时,如图1,∠PHA=90°,
∴∠HPA+∠HAP=90°,又∠HAP+∠CAB=90°,
∴∠APM=∠CAB,
在△APM 和△CAB 中,
,
∴△APM≌△CAB(ASA),
∴AP=CA=8,
∴t=8,
∴经过 8 秒时,PM⊥AB;
(4)根据勾股定理得,BM=
,BP 的最小值为 8,
∵
<8,
∴BM≠BP,
当 MB=MP 时,
在 Rt△BCM 和 Rt△MAP 中,
,
∴Rt△BCM≌Rt△MAP(HL),
∴AP=CM=2, 则 t=2,
当 PB=PM 时,如图2,作BF⊥AN于 F, 则四边形 BCAF 为矩形,
∴BF=CA=8,AF=BC=6,
∴PF=6﹣t,
由勾股定理得,BP2=PF2+BF2,MP2=AM2+AP2,
∴PF2+BF2=AM2+AP2,即(6﹣t)2+82=62+t2, 解得,t=
,
∴当△BMP 是等腰三角形时,t=2 或
.