题目内容
计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.
从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是( )
A.n个 B.(n-1)个 C.(n-2)个 D.(n-3)个
在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )
A. B. C. D.
若函数y=2x+3与y=3x-2b的图象交x轴于同一点,则b的值为( )
A. -3 B. - C. 9 D. -
已知,如图,点M在x轴上,以点M为圆心,2.5长为半径的圆交y轴于A、B两点,交x轴于C(x1,0)、D(x2,0)两点,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的两根.
(1)求点C、D及点M的坐标;
(2)若直线y=kx+b切⊙M于点A,交x轴于P,求PA的长;
(3)⊙M上是否存在这样的点Q,使点Q、A、C三点构成的三角形与△AOC相似?若存在,请求出点的坐标,并求出过A、C、Q三点的抛物线的解析式;若不存在,请说明理由.
如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=8,则cosB的值是( )
设a是9的平方根,B=()2,则a与B的关系是( )
A. a=±B B. a=B C. a=﹣B D. 以上结论都不对
关于的一元二次方程x2-(k+3)x+2k+2=0.
(1)求证:方程总有两个实数根;
(2)若方程有一根小于1,求k的取值范围.
二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(7,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个