题目内容

已知正方形内接于⊙O,P是劣弧AD上任意一点,(如图),则∠ABP+∠DCP等于


  1. A.
    90°
  2. B.
    60°
  3. C.
    45°
  4. D.
    30°
C
分析:先连接AC,由于圆的内接正方形将圆分成四等分,所以∠ACD=45°,由于∠ABP、∠ACP对着同一条弧,由圆周角定理知∠ACP=∠ABP,即∠ABP+∠PCD=∠ACD=45°,由此得解.
解答:解:连接AC,
∵四边形ABCD是圆的内接正方形,
∴∠ACD=45°;
而∠ABP=∠ACP,则∠ABP+∠DCP=∠ACD=45°,
故选C.
点评:此题主要考查的是圆内接正多边形的性质以及圆周角定理的应用,难度不大,解题的关键是根据圆周角定理得出∠ABP+∠PCD=∠ACD.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网