题目内容
若3×9m×27m=321,则m的值为( )
A. 3 B. 4 C. 5 D. 6
一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为( )
A. 50° B. 60° C. 70° D. 80°
方程x(x+4)=8x+12的一般形式是_____;一次项为_____.
求下列各式中的x:(1)7(x﹣3)2﹣=0;(2)2(3x+5)3+54=0.
在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )
A. (a+b)2=a2+2ab+b2
B. (a﹣b)2=a2﹣2ab+b2
C. a2﹣b2=(a+b)(a﹣b)
D. (a+2b)(a﹣b)=a2+ab﹣2b2
如图,抛物线y=ax2+bx+3经过点 B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.
(1)求抛物线的表达式;
(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)
(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;
(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.
按要求完成下列各题:
(1)解方程x2﹣6x﹣4=0(用配方法)
(2)计算:tan260°﹣2cos60°﹣sin45°
已知△ABC的边AB是⊙O的弦.
(1)如图1,若AB是⊙O的直径,AB=AC,BC交⊙O于点D,且DM⊥AC于M,请判断直线DM与⊙O的位置关系,并给出证明;
(2)如图2,AC交⊙O于点E,若E恰好是的中点,点E到AB的距离是8,且AB长为24,求⊙O的半径长.
已知y=+-3,则2xy的值为( )
A. -15 B. 15 C. - D. 无法确定