题目内容
| 12+22 |
| 1×2 |
| 22+32 |
| 2×3 |
| 32+42 |
| 3×4 |
| 20022+20032 |
| 2002×2003 |
考点:有理数无理数的概念与运算
专题:
分析:首先将
变形,可得
=
=2+
,继而原式可变为=(2+
)+(2+
)+(2+
)+…+(2+
),则可求得答案.
| n2+(n+1)2 |
| n(n+1) |
| n2+(n+1)2 |
| n(n+1) |
| 2n(n+1)+1 |
| n(n+1) |
| 1 |
| n(n+1) |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2002×2003 |
解答:解:∵
=
=2+
,
∴原式=(2+
)+(2+
)+(2+
)+…+(2+
)
=2×2002+(
+
+
+…+
)
=4004+(1-
+
-
+
-
+…+
-
)
=4004+1-
=4004
.
| n2+(n+1)2 |
| n(n+1) |
| 2n(n+1)+1 |
| n(n+1) |
| 1 |
| n(n+1) |
∴原式=(2+
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2002×2003 |
=2×2002+(
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2002×2003 |
=4004+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2002 |
| 1 |
| 2003 |
=4004+1-
| 1 |
| 2003 |
=4004
| 2002 |
| 2003 |
点评:此题考查了有理数的概念与运算.注意得到
=2+
是解此题的关键.
| n2+(n+1)2 |
| n(n+1) |
| 1 |
| n(n+1) |
练习册系列答案
相关题目