题目内容
如图:Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B的度数为
- A.20°
- B.22.5°
- C.25°
- D.30°
B
分析:由DE是AB的垂直平分线,利用线段的垂直平分线的性质得∠B=∠BAD,结合∠CAD:∠DAB=2:1与直角三角形两锐角互余,可以得到答案.
解答:在Rt△ABC中
∵DE是AB的垂直平分线
∴∠B=∠BAD
∵∠CAD:∠DAB=2:1
∴4∠B=90°
∴∠B=22.5°
故选B
点评:此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.由已知条件得出4∠B=90°是正确解答本题的关键.
分析:由DE是AB的垂直平分线,利用线段的垂直平分线的性质得∠B=∠BAD,结合∠CAD:∠DAB=2:1与直角三角形两锐角互余,可以得到答案.
解答:在Rt△ABC中
∵DE是AB的垂直平分线
∴∠B=∠BAD
∵∠CAD:∠DAB=2:1
∴4∠B=90°
∴∠B=22.5°
故选B
点评:此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.由已知条件得出4∠B=90°是正确解答本题的关键.
练习册系列答案
相关题目