题目内容
分解因式:2x2-12x+18= .
某校九年级(1)班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图.根据统计图提供的信息,捐款金额的众数和中位数分别是( )
A.20、20 B.30、20 C.20、30 D.30、30
如图,?ABCD中,点E,F在对角线BD上,且BE=DF,求证:
(1)AE=CF;
(2)四边形AECF是平行四边形.
如图所示,该几何体的左视图是( )
近年来,地震、泥石流等自然灾害频繁发生,造成极大的生命和财产损失.为了更好地做好“防震减灾”工作,我市相关部门对某中学学生“防震减灾”的知晓率采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”、“比较了解”、“基本了解”和“不了解”四个等级.小明根据调查结果绘制了如下统计图,请根据提供的信息回答问题:
(1)本次参与问卷调查的学生有 人;扇形统计图中“基本了解”部分所对应的扇形圆心角是 度;在该校2000名学生中随机提问一名学生,对“防震减灾”不了解的概率为 .
(2)请补全频数分布直方图.
在反比例函数(k<0)的图象上有两点(-1,y1),(-,y2),则y1-y2的值是( )
A.负数 B.非正数 C.正数 D.不能确定
如图,在?ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于( )
A.2cm B.4cm C.6cm D.8cm
二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1= .
阅读材料,解答问题.
利用图象法解一元二次不等式:x2-2x-3>0.
【解析】设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又∵当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
∴由此得抛物线y=x2-2x-3的大致图象如图所示.
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是 ;
(2)仿照上例,用图象法解一元二次不等式:x2-1>0.(大致图象画在答题卡上)