题目内容

12.如图,在△ABC中,∠A=30°,∠B=45°,AC=$2\sqrt{3}$,则AB的长为(  )
A.3+$\sqrt{3}$B.2+2$\sqrt{2}$C.2$\sqrt{3}$D.6

分析 过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.

解答 解:过C作CD⊥AB于D,

∴∠ADC=∠BDC=90°,
∵∠B=45°,
∴∠BCD=∠B=45°,
∴CD=BD,
∵∠A=30°,AC=2$\sqrt{3}$,
∴CD=$\sqrt{3}$,
∴BD=CD=$\sqrt{3}$,
由勾股定理得:AD=$\sqrt{A{C}^{2}-C{D}^{2}}$=3,
∴AB=AD+BD=3+$\sqrt{3}$.
故选A.

点评 本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网