题目内容
已知二次函数
(1)求证:无论m 为任何实数,此二次函数的图象与 x 轴都有两个交点;
(2)当二次函数的图像经过点(3,6)时,确定m 的值,并写出此二次函数与x 轴的交点坐标.
事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是 .
将抛物线向上平移2个单位,则得到的抛物线表达式为
A. B. C. D.
如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留一位小数,=1.73,=1.41)
四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有 个直角三角形.
如图所示,AB为半圆O的直径,C为圆上一点,AD平分∠BAC交半圆于点D,过点D作DE⊥AC,DE交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,DE=,求线段AC的长
解下列方程:
(1)
(2)
下列根式是最简二次根式的是( )
A、 B、 C、 D、
如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<)秒.解答如下问题:
(1)当t为何值时,PQ∥BO?
(2)设△AQP的面积为S,
①求S与t之间的函数关系式,并求出S的最大值;
②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.