题目内容
已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β= .
以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是( )
A.如图1,展开后测得∠1=∠2
B.如图2,展开后测得∠1=∠2且∠3=∠4
C.如图3,测得∠1=∠2
D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD
如图,抛物线y=ax2+bx+c与x轴的一个交点A在点(﹣2,0)和(﹣1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则:
(1)abc 0(填“>”或“<”);
(2)a的取值范围是 .
下列图形中,是中心对称图形的有( )
A.4个 B.3个 C.2个 D.1个
如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=60°,弦AD平分∠BAC,若AD=6,那么AC= .
如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )
A.45° B.50° C.60° D.75°
如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )
A.2 B. C. D.
如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点,若OP的长是整数,则满足条件的点P有( )
A.2个 B.3个 C.4个 D.5个
某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?