题目内容
【题目】定义:在平面直角坐标系中,点A、B为函数L图象上的任意两点,点A坐标为(x1 , y1),点B坐标为(x2 , y2),把式子
称为函数L从x1到x2的平均变化率;对于函数K:y=2x2﹣3x+1图象上有两点A(x1 , y1)和B(x2 , y2),当x1=1,x2﹣x1=
时,函数K从x1到x2的平均变化率是;当x1=1,x2﹣x1=
(n为正整数)时,函数K从x1到x2的平均变化率是 .
【答案】
;![]()
【解析】解:∵x1=1,x2﹣x1=
,
∴x2=
,
则y1=0,y2=2×
﹣3×
+1=
,
∴函数K从x1到x2的平均变化率是
=
;
∵x1=1,x2﹣x1=
,
∴x2=
,
则y1=0,y2=2×
﹣3×
+1=
,
∴函数K从x1到x2的平均变化率是
=
,
所以答案是:
,
.
【题目】某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
完成作业 | 单元测试 | 期末考试 | |
小张 | 70 | 90 | 80 |
小王 | 60 | 75 |
(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
(2)若按完成作业、单元检测、期末考试三项成绩按
的权重来确定期末评价成绩.
①请计算小张的期末评价成绩为多少分?
②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
【题目】安庆市在精准扶贫活动中,因地制宜指导农民调整种植结构,增加种植效益,2018年李大伯家在工作队的帮助下,计划种植马铃薯和蔬菜共15亩,预计每亩的投入与产出如下表:(每亩产出-每亩投入=每亩纯收入)
种类 | 投入(元) | 产出(元) |
马铃薯 | 1000 | 4500 |
蔬菜 | 1200 | 5300 |
(1)如果这15亩地的纯收入要达到54900元,需种植马铃薯和蔬菜各多少亩?
(2)如果总投入不超过16000元,则最多种植蔬菜多少亩?该情况下15亩地的纯收入是多少?