题目内容


某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为      元.

 


25 元.

【考点】二次函数的应用.

【专题】销售问题.

【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.

【解答】解:设最大利润为w元,

则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,

∵20≤x≤30,

∴当x=25时,二次函数有最大值25,

故答案是:25.

【点评】本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网