题目内容
分析:根据条件,利用“HL”证明Rt△ABP≌Rt△ACP,可知∠APB=∠APC,再利用“SAS”证明△PBD≌△PCD即可.
解答:解:可以.
理由:∵PB⊥AB于点B,PC⊥AC于点C,且PB=PC,
∴在Rt△ABP和Rt△ACP中,
PB=PC,AP=AP,
∴Rt△ABP≌Rt△ACP(HL),
∴∠APB=∠APC.
在△PBD与△PCD中,
PB=PC,∠APB=∠APC,PD=PD,
∴△PBD≌△PCD(SAS),
∴∠BDP=∠CDP.
理由:∵PB⊥AB于点B,PC⊥AC于点C,且PB=PC,
∴在Rt△ABP和Rt△ACP中,
PB=PC,AP=AP,
∴Rt△ABP≌Rt△ACP(HL),
∴∠APB=∠APC.
在△PBD与△PCD中,
PB=PC,∠APB=∠APC,PD=PD,
∴△PBD≌△PCD(SAS),
∴∠BDP=∠CDP.
点评:本题考查了角平分线性质,全等三角形的证明及性质.关键是明确图形中相等线段,相等角及全等三角形.
练习册系列答案
相关题目