ÌâÄ¿ÄÚÈÝ
ÉñÆæµÄÊýѧÓÎÏ·£¬¸ù¾ÝÏÂÃæµÄÓÎÏ·Ïòµ¼À´ÊÔ×ÅÍæÕâ¸öÓÎÏ·£¬Ð´³öÒ»¸öÄãϲ»¶µÄÊý£¬°ÑÕâ¸öÊý¼ÓÉÏ2£¬°Ñ½á¹û³ËÒÔ5£¬ÔÙ¼õÈ¥10£¬ÔÙ³ýÒÔ5£¬½á¹ûÄã»áÖØÐµõ½ÔÀ´µÄÊý£®
¸ù¾ÝÕâ¸öÓÎÏ·ÖÐÿһ²½£¬Áгö×îºóµÄ±í´ïʽ£®
£¨1£©¼ÙÉèÒ»¿ªÊ¼Ð´³öµÄÊýΪn£¬¸ù¾ÝÕâ¸öÓÎÏ·µÄÿһ²½£¬Áгö×îºóµÄ±í´ïʽ£®
£¨2£©½«£¨1£©Öеõ½µÄ±í´ïʽ½øÐмò»¯£¬ÓÃÄãµÄ½á¹ûÀ´Ö¤Êµ£®ÎªÊ²Ã´ÓÎÏ·¶ÔÈÎÒâÊý¶¼³ÉÁ¢£®
£¨3£©×Ô¼º±àдһ¸öÊýѧÓÎÏ·£¬²¢Ð´³öÖ¸µ¼²½Ö裨ÊÔ×ÅʹÄã±à³öµÄÓÎÏ·ÈÃÈ˸е½¾ªÆæ£¬ÇÒ²¢²»ÊÇÏÔ¶øÒ×¼ûµÄ£®£©
¸ù¾ÝÕâ¸öÓÎÏ·ÖÐÿһ²½£¬Áгö×îºóµÄ±í´ïʽ£®
£¨1£©¼ÙÉèÒ»¿ªÊ¼Ð´³öµÄÊýΪn£¬¸ù¾ÝÕâ¸öÓÎÏ·µÄÿһ²½£¬Áгö×îºóµÄ±í´ïʽ£®
£¨2£©½«£¨1£©Öеõ½µÄ±í´ïʽ½øÐмò»¯£¬ÓÃÄãµÄ½á¹ûÀ´Ö¤Êµ£®ÎªÊ²Ã´ÓÎÏ·¶ÔÈÎÒâÊý¶¼³ÉÁ¢£®
£¨3£©×Ô¼º±àдһ¸öÊýѧÓÎÏ·£¬²¢Ð´³öÖ¸µ¼²½Ö裨ÊÔ×ÅʹÄã±à³öµÄÓÎÏ·ÈÃÈ˸е½¾ªÆæ£¬ÇÒ²¢²»ÊÇÏÔ¶øÒ×¼ûµÄ£®£©
¿¼µã£ºÕûʽµÄ¼Ó¼õ,ÁдúÊýʽ
רÌ⣺¼ÆËãÌâ
·ÖÎö£º£¨1£©¸ù¾ÝÓÎÏ·¹æÔòÁгö´úÊýʽ£»
£¨2£©»¯¼ò¼´¿ÉµÃµ½½á¹û£»
£¨3£©Ò»¸öÊý³ËÒÔÕâ¸öÊý¼ÓÉÏ£¬¼õÈ¥Õâ¸öÊýµÄƽ·½£¬Æä²î³ýÒÔÕâ¸öÊý
£¨2£©»¯¼ò¼´¿ÉµÃµ½½á¹û£»
£¨3£©Ò»¸öÊý³ËÒÔÕâ¸öÊý¼ÓÉÏ£¬¼õÈ¥Õâ¸öÊýµÄƽ·½£¬Æä²î³ýÒÔÕâ¸öÊý
½â´ð£º½â£º£¨1£©±í´ïʽΪ£º[5£¨n+2£©-10]¡Â5£»
£¨2£©¸ù¾ÝÌâÒâµÃ£º[5£¨n+2£©-10]¡Â5=n+2-2=n£»
£¨3£©ÊýѧÓÎϷΪ£ºÒ»¸öÊý³ËÒÔÕâ¸öÊý¼ÓÉÏ£¬¼õÈ¥Õâ¸öÊýµÄƽ·½£¬Æä²î³ýÒÔÕâ¸öÊýµÈÓÚ1£¬
¸ù¾ÝÌâÒâµÃ£º[n£¨n+1£©-n2]¡Ân=n+1-n=1£®
£¨2£©¸ù¾ÝÌâÒâµÃ£º[5£¨n+2£©-10]¡Â5=n+2-2=n£»
£¨3£©ÊýѧÓÎϷΪ£ºÒ»¸öÊý³ËÒÔÕâ¸öÊý¼ÓÉÏ£¬¼õÈ¥Õâ¸öÊýµÄƽ·½£¬Æä²î³ýÒÔÕâ¸öÊýµÈÓÚ1£¬
¸ù¾ÝÌâÒâµÃ£º[n£¨n+1£©-n2]¡Ân=n+1-n=1£®
µãÆÀ£º´ËÌ⿼²éÁËÕûʽµÄ¼Ó¼õ£¬ÒÔ¼°ÁдúÊýʽ£¬ÅªÇåÌâÒâÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒªµÃµ½µãA¡ä£¨2£¬-1£©£¬Ð轫µãA£¨-2£¬1£©£¨¡¡¡¡£©
| A¡¢ÏÈÏò×óÆ½ÒÆ4¸öµ¥Î»³¤¶È£¬ÔÙÏòÉÏÆ½ÒÆ2¸öµ¥Î»³¤¶È |
| B¡¢ÏÈÏò×óÆ½ÒÆ4¸öµ¥Î»³¤¶È£¬ÔÙÏòÏÂÆ½ÒÆ2¸öµ¥Î»³¤¶È |
| C¡¢ÏÈÏòÓÒÆ½ÒÆ4¸öµ¥Î»³¤¶È£¬ÔÙÏòÉÏÆ½ÒÆ2¸öµ¥Î»³¤¶È |
| D¡¢ÏÈÏòÓÒÆ½ÒÆ4¸öµ¥Î»³¤¶È£¬ÔÙÏòÏÂÆ½ÒÆ2¸öµ¥Î»³¤¶È |
µ±x=
-1£¬Ôò´úÊýʽx2+5x-6=£¨¡¡¡¡£©
| 5 |
A¡¢5-3
| ||
B¡¢3
| ||
C¡¢5
| ||
D¡¢3
|
ÏÂÁи÷ÌâÖУ¬·Ö½âÒòʽ´íÎóµÄÊÇ£¨¡¡¡¡£©
| A¡¢x2-1=£¨x+1£©£¨x-1£© |
| B¡¢£¨-2y£©2-x2=£¨-2y+x£©£¨2y-x£© |
| C¡¢81x2-64y2=£¨9x+8y£©£¨9x-8y£© |
| D¡¢1-4y2=£¨1+2y£©£¨1-2y£© |
| A¡¢30¡ã | B¡¢50¡ã |
| C¡¢40¡ã | D¡¢60¡ã |