题目内容

如图,测量旗杆AB的高度时,先在地面上选择一点C,使∠ACB=15°.然后朝着旗杆方向前进到点D,测得∠ADB=30°,量得CD=13m,求旗杆AB的高.

解:∵∠ACB=15°,∠ADB=30°,
∴∠CAD=∠ADB-∠ACB=30°-15°=15°,
即△CAD为等腰三角形,
∴AD=CD=13,
在△ADB中,∵AB⊥DB,∠ADB=30°,
∴AB=AD=×13=6.5m.
分析:根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD,再根据等角对等边的性质可得AD=CD,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.
点评:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,熟记性质是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网