题目内容
把方程3x(x+1)=2(x–2)+8化为一般形式______,二次项系数______,一次项系数__________,常数项______。
如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是( )
A. 一直减小 B. 一直不变 C. 先减小后增大 D. 先增大后减小
设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为 .
如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点、是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.
如图所示,已知二次函数的图象经过(-1,0)和(0,-1)两点,则化简代数式=________.
下列平面图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
如下图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
(2)若PA=2,cosB=,求⊙O半径的长.
已知⊙O1与⊙O2的圆心距O1O2=6cm,且两圆的半径满足一元二次方程x2-6x+8=0,则两圆的位置关系为 ( )
A. 外切 B. 内切 C. 外离 D. 相交
如图,△ABC中,AD⊥BC,垂足为D,AD=BD=3,CD=2,点E从点B出发沿线段BA的方向移动到点A停止,连接CE.若△ADE与△CDE的面积相等,则线段DE的长度是_____.