题目内容
如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是( )
A. 2 B. 2 C. 2 D.
若的值比的值小1,则x的值为( )
A. B. - C. D. -
如图,在平面直角坐标系xOy中,△OA1B1绕点O逆时针旋转90°,得△OA2B2;△OA2B2绕点O逆时针旋转90°,得△OA3B3;△OA3B3绕点O逆时针旋转90°,得△OA4B4;…;若点A1(1,0),B1(1,1),则点B4的坐标是________,点B 2018的坐标是________.
如图,在平面直角坐标系中,点A(0,a),点B(b,0),点D(d,0),其中a、b、d满足: ,DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
(1)求A、B、D三点的坐标;
(2)求证△ABO≌△BED
(3)求直线AE的解析式;
(4)动点P在y轴上,求PE+PC最小值时点P的坐标。
如图,在矩形ABCD中,AB=10,BC=5,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A1、D1处,则阴影部分图形的周长为 .
如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:
①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个
王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分)的关系(从小强开始爬山时计时).
(1)小强让爷爷先上多少米?
(2)山顶离山脚的距离有多少米?谁先爬上山顶?
(3)小强经过多长时间追上爷爷?
下列关系式中,正确的是( )
A. (a+b)2=a2-2ab+b2 B. (a-b)2=a2-b2
C. (a+b)2=a2+b2 D. (a+b)(a-b)=a2-b2
如图,已知在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC的面积.