题目内容

1.如图,已知OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOE=140°,∠BOC比∠COD的2倍还多10°,那么∠AOB是多少度?

分析 首先根据角平分线的性质可得∠AOB=∠BOC=$\frac{1}{2}$∠AOC,∠COD=$\frac{1}{2}$∠EOC,再根据条件∠AOE=140°,可计算出∠BOC+∠DOC,然后设∠COD=x°,则∠BOC=(2x+10)°,进而可得方程x+2x+10=70,再解即可.

解答 解:∵OB是∠AOC的平分线,OD是∠COE的平分线,
∴∠AOB=∠BOC=$\frac{1}{2}$∠AOC,∠COD=$\frac{1}{2}$∠EOC,
∵∠AOE=140°,
∴∠BOC+∠DOC=$\frac{1}{2}$∠AOC+$\frac{1}{2}∠$EOC=$\frac{1}{2}$(∠AOC+∠EOC)=$\frac{1}{2}×140°$=70°,
设∠COD=x°,则∠BOC=(2x+10)°,
x+2x+10=70,
解得:x=20,
∴∠BOC=2×20°+10°=50°,
∴∠AOB=50°.

点评 此题主要考查了角平分线的性质,以及角的计算,关键是掌握角平分线把角分成相等的两部分.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网