题目内容
【题目】(1)(观察发现)如图 1,△ABC 和△CDE 都是等边三角形,且点 B、C、E 在一条直线上,连接 BD 和AE,BD、AE 相交于点 P,则线段 BD 与 AE 的数量关系是 ,BD 与 AE 相交构成的锐角的度数是 .(只要求写出结论,不必说明理由)
![]()
(2)(深入探究 1)如图 2,△ABC 和△CDE 都是等边三角形,连接 BD 和 AE,BD、AE 相交于点 P,猜想线段 BD 与 AE 的数量关系,以及 BD 与 AE 相交构成的锐角的度数. 请说明理由 结论:
理由:_______________________
![]()
(3)(深入探究 2)如图 3,△ABC 和△CDE 都是等腰直角三角形,且∠ACB=∠DCE=90°,连接 AD、BE,Q 为 AD 中点,连接 QC 并延长交 BE 于 K. 求证:QK⊥BE.
![]()
【答案】(1)BD=AE,60°;
(2)BD=AE,60°;
(3)证明见详解.
【解析】
(1)根据等边三角形的性质可得AB=AC,CD=CE,∠ACB=∠DCE=60°,然后求出∠ACE=∠BCD,再利用“边角边”证明△ACE和△BCD全等,根据全等三角形对应边相等可得BD=AE,根据全等三角形对应角相等可得∠AEC=∠BDC,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DPE=∠DCE;
(2)根据等边三角形的性质可得AB=AC,CD=CE,∠ACB=∠DCE=60°,然后求出∠ACE=∠BCD,再利用“边角边”证明△ACE和△BCD全等,根据全等三角形对应边相等可得BD=AE,根据全等三角形对应角相等可得∠AEC=∠BDC,然后根据三角形的内角和定理求出∠DPE=∠DEC;
(3)延长CQ到R,使得CQ=QR,连接AR、DR.只要证明△ACR≌△BCE,可得∠ACR=∠CBE,由∠ACR+∠BCK=90°,推出∠CBE+∠BCK=90°,可得∠CKB=90°,即CK⊥BE.
解:(1)∵△ABC和△CDE都是等边三角形,
∴AB=AC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠ACE=∠BCD,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(SAS),
∴BD=AE,∠AEC=∠BDC,
由三角形的外角性质,∠DPE=∠AEC+∠DBC,
∠DCE=∠BDC+∠DBC,
∴∠DPE=∠DCE=60°;
(2)结论BD=AE,∠DPE=60°还成立.
∵△ABC和△CDE都是等边三角形,
∴AB=AC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,
即∠ACE=∠BCD,
在△ACE和△BCD中,
,
∴△ACE≌△BCD(SAS),
∴BD=AE,∠AEC=∠BDC,
∵∠BDC+∠CDE+∠AED
=∠AEC+∠CDE+∠AED
=∠CDE+∠CED
=180°-∠DCE
=180°-60°=120°,
∴∠DPE=180°-(∠BDC+∠CDE+∠AED)=180°-120°=60°;
(3)如图3中,延长CQ到F,使得CQ=QF,连接AF、DF.![]()
∵△ABC和△CDE都是等腰直角三角形,
∴∠ACB=∠DCE=90°,AC=BC,CE=CD,
∴∠BCE+∠ACD=180°,
∵Q 为 AD 中点,
∴AQ=DQ,
∵CQ=QF,
∴四边形ACDF是平行四边形,
∴AF=CD=CE,AF∥CD,
∴∠CAF+∠ACD=180°,
∴∠BCE=∠CAF,∵CA=CB,AF=CE,
∴△ACF≌△BCE,
∴∠ACF=∠CBE,
∵∠ACF+∠BCK=180°-∠ACB =180°-90°=90°,
∴∠CBE+∠BCK=90°,
∴∠CKB=90°,即CK⊥BE.