题目内容
考点:旋转的性质,等边三角形的性质
专题:计算题
分析:先根据等边三角形的性质得∠ADC=∠ACD=60°,由于∠ABC=120°,根据四边形内角和得到∠BAD+∠BCD=180°,则∠BAD+∠BCA=120°,再根据旋转的性质得∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,于是有∠BCA+∠ECD+∠ACD=180°,得到B、C、E在同一条直线上,接着证明△BDE为等边三角形得到∠DBE=60°,所以∠BAD=∠ABC-∠DBE=60°,BD=BE=BC+CE=BC+AB=5.
解答:解:∵△ACD是等边三角形,
∴∠ADC=∠ACD=60°,
∵∠ABC=120°,
∴∠BAD+∠BCD=180°,
∴∠BAD+∠BCA=120°,
∵△ABD绕点D按顺时针方向旋转60°后到△ECD的位置,
∴∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,
∴∠BCA+∠ECD=120°,
∴∠BCA+∠ECD+∠ACD=180°,
∴B、C、E在同一条直线上.
∵DB=DE,∠BDE=60°,
∴△BDE为等边三角形,
∴∠DBE=60°,
∴∠BAD=∠ABC-∠DBE=60°,
∴BD=BE=BC+CE=BC+AB=3+2=5.
∴∠ADC=∠ACD=60°,
∵∠ABC=120°,
∴∠BAD+∠BCD=180°,
∴∠BAD+∠BCA=120°,
∵△ABD绕点D按顺时针方向旋转60°后到△ECD的位置,
∴∠BAD=∠ECD,DB=DE,∠BDE=60°,AB=CE,
∴∠BCA+∠ECD=120°,
∴∠BCA+∠ECD+∠ACD=180°,
∴B、C、E在同一条直线上.
∵DB=DE,∠BDE=60°,
∴△BDE为等边三角形,
∴∠DBE=60°,
∴∠BAD=∠ABC-∠DBE=60°,
∴BD=BE=BC+CE=BC+AB=3+2=5.
点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质.
练习册系列答案
相关题目
下列两个单项式中,是同类项的一组是( )
| A、3x2y与3y2x | ||
| B、2m与2n | ||
| C、2xy2与(2xy)2 | ||
D、3与-
|
| A、30° | B、40° |
| C、50° | D、60° |
方程(x-3)2=0的根是( )
| A、x1=-3,x2=3 | ||||
| B、x1=x2=3 | ||||
| C、x1=x2=-3 | ||||
D、x1=
|