题目内容
已知a+b+c=0,求a(| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
分析:由于a+b+c=0,则a+b=-c,a+c=-b,b+c=-a,把分式化简,再整体代入,可求值.
解答:解:
a(
+
)+b(
+
)+c(
+
)
=
+
+
+
+
+
=
+
+
∵a+b+c=0,则a+b=-c,a+c=-b,b+c=-a,
∴原式=
+
+
=-3.
故答案为-3.
a(
| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
=
| a |
| b |
| a |
| c |
| b |
| c |
| b |
| a |
| c |
| a |
| c |
| b |
=
| a+c |
| b |
| a+b |
| c |
| b+c |
| a |
∵a+b+c=0,则a+b=-c,a+c=-b,b+c=-a,
∴原式=
| -b |
| b |
| -c |
| c |
| -a |
| a |
故答案为-3.
点评:本题运用了整体代入的方法,经过恒等变形.使问题得到解决.
练习册系列答案
相关题目