题目内容
(7分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为2,求图中阴影部分的面积.
(本小题8分)某公园有一座雕塑D,在北门B的正南方向,BD为100米,小树林A在北门的南偏西60°方向,荷花池C在北门B的东南方向,已知A,D,C三点在同一条直线上且BD⊥AC:
(1)分别求线段AB、BC、AC的长(结果中保留根号,下同);
(2)若有一颗银杏树E恰好位于∠BAD的平分线与BD的交点,求BE的距离.
如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,6),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为a,△BED的面积为S.
(1)当a=时,求S的值.
(2)求S关于a(a≠)的函数解析式.
点P、Q、R是平面内不在同一条直线上的三个定点,点M是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有( )
A.1个 B.2个 C.3个 D.4个
(12分)在直角坐标系中,已知点P是反比例函数(>0)图象上一个动点,以P为圆心的圆始终与轴相切,设切点为A.
(1)如图1,⊙P运动到与轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.
在Rt△ABC中,∠C=90°,AC=3,BC=4,若以点C为圆心,R为半径的圆与斜边有且只有一个公共点,则R 的取值范围是__________________.
平时我们在跳绳时,绳子甩到最高处的形状可近似看做抛物线,如图建立直角坐标系,抛物线的函数表达式为,绳子甩到最高处时刚好通过站在点(2,0)处的小明的头顶,则小明的身高为( )
A.1.5m B.1.625m C.1.66m D.1.67m
如下图是夜晚小亮从点A经过路灯C的正下方沿直线走到点B,他的影长随他与点A之间的距离的变化而变化,那么表示与之间的函数关系的图像大致为
某校篮球班21名同学的身高如下表
则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm)( )
A.186,186 B.186,187 C.186,188 D.208,188