题目内容
如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的,如果设配色条纹的宽度为x米,则可列方程_____.
某果园2015年水果产量为100吨,2017年水果产量为144吨,求该果园水果产量的年平均增长率,设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )
A. B. 100(1-x)2=144 C. 144(1+x)2=100 D. 100(1+x)2=144
函数 自变量x的取值范围是___ .
问题呈现:如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD.(S表示面积)
实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.
如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+.
如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与之间的数量关系,并说明理由.
迁移应用:
请直接应用“实验探究”中发现的结论解答下列问题:
如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=,求EG的长.
如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_____.
反比例函数的图象上有三个点(x1,y1)、(x2,y2)、(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1
如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.
(1)求一次函数的解析式;
(2)求△AOB的面积;
(3)观察图象,直接写出y1>y2时x的取值范围.
根据如图的程序,计算当输入值x=﹣2时,输出结果y为( )
A. 1 B. 5 C. 7 D. 以上都有可能
若关于x的方程无解,则m=___________.