题目内容
为落实“阳光体育”工程,某校计划购买m个篮球和n个排球.已知篮球每个80元,排球每个60元.购买这些篮球和排球的总费用为_____元.
如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形(长方形),点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在线段BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 ____________________________________ .
如图17-Z-10是由边长为1的小正方形组成的网格.
(1)求四边形ABCD的面积;
(2)你能判断AD与CD的位置关系吗?说出你的理由.
图17-Z-10
如图、点A、B分别为抛物线 、与y轴交点,两条抛物线都经过点C(6,0)。点P、Q分别在抛物线 、 上,点P在点Q的上方,PQ平行y轴,设点P的横坐标为m。
(1)求b和c的值
(2)求以A、B、P、Q为顶点的四边形是平行四边形时m的值。
( 3 )当m为何值是,线段PQ的长度取的最大值?并求出这个最大值。
(4)直接写出线段PQ的长度随m增大而减小的m的取值范围。
有甲、乙两个不透明的口袋,甲袋中有3个球,分别标有数字0,2,5;乙袋中有3个球,分别标有数字0,1,4 .这6个球除所标数字以外没有任何其他区别.从甲、乙两袋各随机摸出1个球,用画树状图(或列表)的方法,求摸出的两个球上数字之和是6的概率.
如图,直线a与直线b交于点A,与直线c交于点B.∠1=120,∠2=45°.若使直线b与直线c平行,则可将直线b绕点A逆时针旋转
A. 15°. B. 30°. C. 45°. D. 60°.
如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
如图,能判断直线AB∥CD的条件是 ( )
A. ∠1=∠2 B. ∠3=∠4
C. ∠1+∠3=180o D. ∠3+∠4=180o
如图,是由若干个同样大小的立方体搭成的几何体的俯视图,小正方形中的数字表示该位置立方体的个数,则这个几何体的主视图是( )
A. B. C. D.