题目内容
设方程2x2+3x=-1的根为x1、x2,求下列各式的值.
(1)
;
(2)
+2x1-x2+3x1x2.
(1)
| x | 2 1 |
| +x | 2 2 |
(2)
| 2x | 2 1 |
分析:(1)首先根据原方程得到两根之和和两根之积,最后将代数式变形后代入即可求值;
(2)根据方程2x2+3x=-1的根为x1、x2,可得x1+x2=-
,x1•x2=
,2x12+3x1=-1,将原代数式变形为2
+3x1-(x1+x2)+3x1•x2后即可求值.
(2)根据方程2x2+3x=-1的根为x1、x2,可得x1+x2=-
| 3 |
| 2 |
| 1 |
| 2 |
| x | 2 1 |
解答:解:∵方程2x2+3x=-1的根为x1、x2,
∴x1+x2=-
,x1•x2=
,2x12+3x1=-1,
(1)
=(x1+x2)2-2x1x2
=
-1
=
;
(2)
+2x1-x2+3x1x2
=2
+3x1-(x1+x2)+3x1•x2
=-1+
+
=2.
∴x1+x2=-
| 3 |
| 2 |
| 1 |
| 2 |
(1)
| x | 2 1 |
| +x | 2 2 |
=(x1+x2)2-2x1x2
=
| 9 |
| 4 |
=
| 5 |
| 4 |
(2)
| 2x | 2 1 |
=2
| x | 2 1 |
=-1+
| 3 |
| 2 |
| 3 |
| 2 |
=2.
点评:本题考查了根与系数的关系,求出x1、x2的值再代入计算,则计算繁难,解题的关键是利用根与系数的关系及变形.
练习册系列答案
相关题目