题目内容
【题目】如图,直线y=﹣x+3与x轴,y轴分别相交于点B、点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,点A在点B的左边,顶点为P,且线段AB的长为2.
![]()
(1)求点A的坐标;
(2)求该抛物线的函数表达式;
(3)在抛物线的对称轴上是否存在点G,使|GC﹣GB|最大?若存在,求G点坐标;若不存在说明理由.
(4)连结AC,请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
【答案】(1)(1,0);(2)y=x2﹣4x+3;(3)G点坐标为(2,﹣3);(4)在x轴上存在两点Q1(0,0),Q2(
,0)
【解析】
试题分析:(1)求值直线y=﹣x+3与x轴的交点B,然后根据AB的长,即可求得OA的长,则A的坐标即可求得;
(2)利用待定系数法求得二次函数的解析式;
(3)由于A、B两点关于抛物线的对称轴即直线x=2对称,所以G点为直线CA与直线x=2的交点,先运用待定系数法求出直线AC的解析式,再令x=2,求出y的值,进而得出G点坐标;
(4)分成
=
,∠PBQ=∠ABC=45°和
=
,∠QBP=∠ABC=45°两种情况求得QB的长,据此即可求解.
解:(1)当y=0时,﹣x+3=0,解得x=3,即B(3,0),
由AB=2,得3﹣2=1,
A的坐标为(1,0);
(2)根据题意得:
,
解得:
,
则抛物线的解析式是:y=x2﹣4x+3;
(3)延长CA,交对称轴于点G,连接GB,则|GC﹣GB|=GC﹣GA=AC最大.
∵抛物线y=x2﹣4x+3与x轴交于点A、点B(3,0),且对称轴为直线x=2,
∴点A的坐标为(1,0).
设直线AC的解析式为y=kx+m,
∵A(1,0),C(0,3),
∴
,
解得
,
∴y=﹣3x+3,
当x=2时,y=﹣3×2+3=﹣3,
∴G点坐标为(2,﹣3);
(4)①当
=
,∠PBQ=∠ABC=45°时,△PBQ∽△ABC.
即
=![]()
∴BQ=3,
又∵BO=3,
∴点Q与点O重合,
∴Q1的坐标是(0,0).
②当
=
,∠QBP=∠ABC=45°时,△QBP∽△ABC.
即
=
,
QB=
.
∵OB=3,
∴OQ=OB﹣QB=3﹣
=![]()
∴Q2的坐标是(
,0).
∵∠PBx=180°﹣45°=135°,∠BAC<135°,
∴∠PBx≠∠BAC.
∴点Q不可能在B点右侧的x轴上
综上所述,在x轴上存在两点Q1(0,0),Q2(
,0)
![]()