题目内容
已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为_____.
已知直线m∥n , 将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A、B两点分别落在直线m、n上.若∠1=20°,则∠2的度数为 ( )
A. 20° B. 30° C. 45° D. 50°
如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD= .
已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
计算:.
如图,过点,,,点是轴下方上的一点,连接,,则的度数是( )
A. B. C. D.
下列计算结果等于的是( )
在矩形ABCD中,AB=1,BC=2,则AC=_______.
数学兴趣小组测量校园内旗杆的高度,有以下两种方案:
方案一:小明在地面上直立一根标杆,沿着直线后退到点,使眼睛、标杆的顶点、旗杆的顶点在同一直线上(如图1).测量:人与标杆的距离=1 m,人与旗杆的距离=16m,人的目高和标杆的高度差=0.9m,人的高度=1.6m.
方案二:小聪在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米(如图2).
请你结合上述两个方案,选择其中的一个方案求旗杆的高度。我选择方案 .