题目内容
分析:有条件可判定△ADC≌△BCE,有全等三角形的性质可得:AD=CE,BE=CE,又因为DC+CE=DE所以AD+BE=DE.
解答:AD+BE=DE.
证明:∵∠ACB=90°
∴∠ACD+∠BCE=90°.
∵AD⊥l,BE⊥l,
∴∠ADC=∠BEC=90°,
∴∠ACD+∠CAD=90°,
∴∠BCE=∠ACD.
∵AC=BC,
∴△ADC≌△BCE.
∴AD=CE,BE=CE.
∵DC+CE=DE,
∴AD+BE=DE.
证明:∵∠ACB=90°
∴∠ACD+∠BCE=90°.
∵AD⊥l,BE⊥l,
∴∠ADC=∠BEC=90°,
∴∠ACD+∠CAD=90°,
∴∠BCE=∠ACD.
∵AC=BC,
∴△ADC≌△BCE.
∴AD=CE,BE=CE.
∵DC+CE=DE,
∴AD+BE=DE.
点评:本题考查了全等三角形的判定和性质,常用的判定方法为:SAS,SSS,AAS,ASA.常用到的性质是:对应角相等,对应边相等.
练习册系列答案
相关题目