题目内容
如图,在正方形ABCD中,E为CD上一点,延长BC到F,使CF=CE,连接DF,BE的延长线与DF相交于G,则下列结论错误的是( )A.BE=DF
B.BG⊥DF
C.∠F+∠CEB=90°
D.∠FDC+∠ABG=90°
【答案】分析:根据题意可知△BCE≌△DCF,根据全等三角形的性质即可得到答案.
解答:解:∵四边形ABCD是正方形
∴∠C=90°,BC=CD
∵CF=CE
∴△BCE≌△DCF
∴BE=DF,∠FBG+∠F=90°,∠FDC+∠ABG=90°,∠F=∠CEB
故选C.
点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
解答:解:∵四边形ABCD是正方形
∴∠C=90°,BC=CD
∵CF=CE
∴△BCE≌△DCF
∴BE=DF,∠FBG+∠F=90°,∠FDC+∠ABG=90°,∠F=∠CEB
故选C.
点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
练习册系列答案
相关题目