题目内容
在实数范围内分解因式:x5﹣9xy4=___.
如图,已知是⊙的直径,,和是圆的两条切线,,为切点,过圆上一点作⊙的切线,分别交,于点,,连接,.若,则等于( )
A. 0.5 B. 1
C. D.
如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖数为___________.
如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).
(1)求抛物线及直线AC的解析式;
(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;
(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.
计算:﹣12018﹣|1﹣|+()﹣1+(3.14﹣π)0+.
如图,以两条直线l1,l2的交点坐标为解的方程组是( )
A. B.
如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.
(1)求抛物线的函数表达式;
(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;
(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.
已知:关于 x 的方程 2x2+kx﹣1=0.
(1)求证:方程有两个不相等的实数根;
(2)若方程的一个根是﹣1,求另一个根及 k 值.
如图,过矩形的四个顶点作对角线、的平行线,分别相交于、、、四点,则四边形为( )
A. 平行四边形 B. 矩形 C. 菱形 D. 正方形