题目内容
已知x2-5x-1991=0,求代数式
的值.
| (x-2)4+(x-1)2-1 |
| (x-1)(x-2) |
考点:分式的化简求值
专题:
分析:根据x2-5x-1991=0,得出x2-5x=1991,再把要求的式子利用完全平方公式、因式分解、约分,化简为x2-5x+8,最后代入计算即可.
解答:解:∵x2-5x-1991=0,
∴x2-5x=1991,
∴
=
=
=
=
=
=
=
=x2-5x+8,
=1991+8
=1999.
∴x2-5x=1991,
∴
| (x-2)4+(x-1)2-1 |
| (x-1)(x-2) |
=
| (x-2)4+(x2-2x+1)-1 |
| (x-1)(x-2) |
=
| (x-2)4+(x2-2x) |
| (x-1)(x-2) |
=
| (x-2)3+x |
| x-1 |
=
| x3-6x2+13x-8 |
| x-1 |
=
| x3-x2-(5x2-13x+8) |
| x-1 |
=
| x2(x-1)-(5x-8)(x-1) |
| x-1 |
=
| (x-1)(x2-5x+8) |
| x-1 |
=x2-5x+8,
=1991+8
=1999.
点评:此题考查了分式的化简求值,用到的知识点是完全平方公式、因式分解、约分,解答此题的关键是把分式化到最简,然后代入计算.
练习册系列答案
相关题目
若有理数n<-1,则下列式子正确的是( )
A、
| ||
B、-n<
| ||
C、-n2<
| ||
D、-n3<-n2<-n<
|