题目内容

【题目】如图,AB∥GD,∠1=∠2,∠BAC=65°.将求∠AGD的过程填写完整.

∵EF∥CD,

∴∠2=      ),

∵∠1=∠2,

∴∠1=∠3,

∴AB∥      ),

∴∠BAC+   =180°(   ),

∵∠BAC=65°,

∴∠AGD=   °.

【答案】∠3,(两直线平行,同位角相等),DG,(内错角相等,两直线平行),∠AGD,(两直线平行,同旁内角互补),115.

【解析】

利用平行线的判定和性质填空即可.

∵EF∥AD,

∴∠2=∠3(两直线平行,同位角相等),

∵∠1=∠2,

∴∠1=∠3(等量代换),

∴AB∥DG(内错角相等,两直线平行),

∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),

∵∠BAC=65°,

∴∠AGD=115°,

故答案为:∠3,(两直线平行,同位角相等),DG,(内错角相等,两直线平行),∠AGD,(两直线平行,同旁内角互补),115.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网