题目内容
7.分析 过点P作PM⊥AB于M,作PN⊥CD于N,根据角平分线上的点到角的两边的距离相等可得PM=PE=PN,再根据平行线间的距离的定义解答即可.
解答
解:如图,过点P作PM⊥AB于M,作PN⊥CD于N,
∵AP、CP分别平分∠BAC和∠ACD,PE⊥AC,
∴PM=PE=PN=3cm,
∴AB与CD之间的距离=PM+PN=3+3=6(cm).
点评 本题考查了角平分线上的点到角的两边的距离相等的性质,作辅助线并熟记性质是解题的关键.
练习册系列答案
相关题目
19.已知⊙O的半径为r,圆心到点A的距离为d,且r,d分别是方程x2-4x+3=0的两根,则点A与⊙O的位置关系是 (( )
| A. | 点A在⊙O内部 | B. | 点A在⊙O上 | C. | 点A在⊙O外部 | D. | 点A不在⊙O上 |