题目内容
观察式子:| 1 |
| 1×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5×7 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 2009×2011 |
分析:根据所给式子,发现规律:
=
(
-
),然后运用抵消的方法进行计算.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:原式=
(1-
+
-
+…+
-
)=
×(1-
)=
×
=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2009 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 1 |
| 2011 |
| 1 |
| 2 |
| 2010 |
| 2011 |
| 1005 |
| 2011 |
点评:计算此类题的时候,要善于找到拆分的规律,然后运用抵消的方法简便计算.
练习册系列答案
相关题目