题目内容
若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是( )
A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<3
(本题满分10分)
【问题】
如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF.求证:EF=BE+DF.
【思考】
将△ABE绕点A逆时针旋转90°至△ADE′的位置,易知点F、D、E′在一条直线上,由SAS可以证得△AE′F≌△AEF.由此得到:EF=E′F=DE′+DF=BE+DF.
【探究】
(1)如图②,在四边形ABCD中,点E、F分别在BC、CD上,AB=AD,∠B+∠D=180°,∠EAF=∠BAD,BE=1,EF=2.2,求DF的长.
(2)将图②中的∠EAF绕点A旋转到如图③的位置,除去(1)中的条件BE=1,EF=2.2,其它条件不变时,探索线段EF、BE、DF之间的数量关系,并说明理由.
如图所示,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是( )
(A) (B) (C) (D)
(本小题6分)图中折线表示芳芳骑自行车离家的距离与时间的关系,她9点离开家,15点回家,请根据图象回答下列问题:
(1)芳芳到达离家最远的地方时,离家________千米;
(2)第一次休息时离家________ 千米;
(3)她在10:00~10:30的平均速度是_________;
(4)芳芳一共休息了_________ 小时;
(5)芳芳返回用了____________小时;
(6)返回时的平均速度是__________.
如图,在平行四边形ABCD中,已知AD=9cm,AB=5cm,AE平分∠BAD交BC边于点E,则EC的长为_______.
一个正多边形的一个外角是40°,这个正多边形的边数是( )
A.10 B.9 C.8 D.5
(本小题6分)
(1)计算:
(2)当a<1时,化简:
(10分)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.
(1)求证:AF=BE;
(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.
下列说法中,正确的是 ( )
A.内错角相等 B.同旁内角互补
C.同角的补角相等 D.相等的角是对顶角