题目内容
下列各式中,是最简二次根式的是( )
A. B. C. D.
我们在研究等腰三角形的轴对称性时,将等腰三角形纸片沿着顶角平分线折叠,发现了“等边对等角”的性质,即如图①,将的纸片沿顶角平分线折叠,发现.
如图②,在中,若,那么与的大小又如何?小明将也沿的角平分线折叠,从而发现.请你在图②中画出图形,并结合图形说明理由.
某中学足球队9名队员的年龄情况如下:
年龄(单位:岁)
14
15
16
17
人数
1
4
2
则该队队员年龄的众数和中位数分别是( )
A. 15,15 B. 15,16 C. 15,17 D. 16,15
如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为________.
如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A. 45° B. 50° C. 55° D. 60°
某种型号油电混合动力汽车,从A地到B地燃油行驶需纯燃油费用76元,从A地到B地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.
(1)求每行驶1千米纯用电的费用;
(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?
对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若=5,则x的取值范围是__________.
已知△ABC的面积是60,请完成下列问题:
(1)如图①,若AD是△ABC的BC边上的中线,则△ABD的面积 _△ACD的面积(选填“>”“<”或“=”).
(2)如图②,若CD,BE分别是△ABC的AB,AC边上的中线,求四边形ADOE的面积可以用如下方法:连接AO,由AD=DB得:S△ADO=S△BDO,同理:S△CEO=S△AEO,设S△ADO=x,S△CEO=y,则S△BDO=x,S△AEO=y,由题意得:S△ABE=S△ABC=30,S△ADC=S△ABC=30,可列方程组为: ,通过解这个方程组可得四边形ADOE的面积为 .
(3)如图③,AD∶DB=1∶3,CE∶AE=1∶2,请你计算四边形ADOE的面积,并说明理由.
若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为
A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)