题目内容
如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则
的值为( )

| A. |
| B. |
| C. |
| D. |
C
根据旋转得出∠NCE=75°,求出∠NCO,设OC=a,则CN=2a,根据△CMN也是等腰直角三角形设CM=MN=x,由勾股定理得出x2+x2=(2a)2,求出x=
a,得出CD=
a,代入求出即可.
解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,
∴∠ECN=75°,
∵∠ECD=45°,
∴∠NCO=180°﹣75°﹣45°=60°,
∵AO⊥OB,
∴∠AOB=90°,
∴∠ONC=30°,

设OC=a,则CN=2a,
∵等腰直角三角形DCE旋转到△CMN,
∴△CMN也是等腰直角三角形,
设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,
x=
a,
即CD=CM=
a,
∴
=
=
,
故选C.
解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,
∴∠ECN=75°,
∵∠ECD=45°,
∴∠NCO=180°﹣75°﹣45°=60°,
∵AO⊥OB,
∴∠AOB=90°,
∴∠ONC=30°,
设OC=a,则CN=2a,
∵等腰直角三角形DCE旋转到△CMN,
∴△CMN也是等腰直角三角形,
设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,
x=
即CD=CM=
∴
故选C.
练习册系列答案
相关题目