题目内容
如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AC=5,DC=3,AB=,则⊙O的直径AE=( )
A. B. 5 C. D.
如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,求CE.
如图,直线a,b被c所截,则∠1与∠2是( )
A. 同位角 B. 内错角 C. 同旁内角 D. 邻补角
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
如图,△ABC中,∠A、∠B、∠C所对的三边分别记为a,b,c,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF=( )
A. a:b:c B. C. cosA:cosB:cosC D. sinA:sinB:sinC
小明不慎把家里的一块圆形玻璃打碎了,其中四块碎片如图所示,为配到一块与原来 大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )
A.第①块 B.第②块 C.第③块 D.第④块
如图,AB是⊙O的直径,弦BC=9,∠BOC=50°,OE⊥AC,垂足为E.
(1)求OE的长.
(2)求劣弧AC的长(结果精确到0.1).
如图,∠AOB是⊙0的圆心角,∠AOB=80°,则弧AB所对圆周角∠ACB的度数是( )
A.30° B.40° C.50° D.80°
某校为了招聘一批优秀教师,对入选的三名候选人进行技能与专业知识两项考核,现将甲、乙、丙三人的考核成绩统计如下:
(1)如果校方认为教师的教学技能与专业知识水平同等重要,那么候选人 将被录取.
(2)如果校方认为教师的教学技能水平比专业知识水平重要,并且赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.