题目内容
要使在实数范围内有意义,则x应满足 ( )
A.x>3 B.x<3 C.x≠3 D.x≥3
设抛物线y=mx2-3mx+2(m≠0)与x轴的交点为A(x1,0),B(x2,0),且x12+x22=17,其中x1<x2,点P(a,b)为抛物线上一动点.
(1)求抛物线的解析式;
(2)连接AC,过P点做直线PE∥AC交x轴于点E,交y轴于点F(O,t),当a取何值时t有最大值,最大值是多少?
(3)判断在(2)的条件中是否存在一点P,使以点A、C、P、E为顶点的四边形为平行四边形.若不存在试说明理由;若存在,试求出点P的坐标.
函数y=与y=-kx2+k(k≠0)在同一直角坐标系中的图象可能是( )
用形状和大小相同的黑色棋子按下图所示的方式排列,按照这样的规律,第n个图形需要棋子_ 枚.(用含n的代数式表示)
“每逢佳节倍思亲”,中秋节是中华民族的传统节日,小菊妈妈买了5个蛋黄饼、6个豆沙饼、3个果脯饼,饼除内部馅料不同外其它均相同.小菊任意吃一个,吃到豆沙饼的概率是( )
A. B. C. D.
(本小题满分8分)如图,在⊙中,为直径,,弦与交于点,过点分别作⊙的切线交于点,且GD与的延长线交于点.
(1)求证:;
(2)已知:,⊙的半径为,求的长.
如图,钝角三角形ABC的面积为18,最长边AB=12,BD平分∠ABC,点M、N分别是BD、BC上的动点,则CM+MN的最小值为______.
(本小题满分12分)如图,已知在中,,是的平分线.
(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹).
(2)判断直线与的位置关系,并说明理由.
若反比例函数的图象经过点(-5,2),则的值为 ( ).
A.10 B.-10 C.-7 D.7