题目内容
如图,直线∥,直线与、都相交,如果∠1=50°,那么∠2的度数是( )
A. 50° B. 100° C. 130° D. 150°
矩形、菱形、正方形都具有的性质是
A. 对角线相等 B. 对角线互相平分 C. 对角线互相垂直 D. 对角线平分对角
今年,我市全面启动“精准扶贫”工作,某校为了了解九年级贫困生人数,对该校九年级6个班进行摸排,得到各班贫困生人数分别为:12,12,14,10,18,16,这组数据的众数和中位数分别是( ).
A. 12和10 B. 12和13 C. 12和12 D. 12和14
已知关于、的二元一次方程组,则的值为_______.
某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是( )
A. 袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球
B. 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
C. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
D. 掷一枚质地均匀的硬币,落地时结果是“正面向上”
某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元,每上涨1元,则每个月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)设每月的销售利润为W,请直接写出W与x的函数关系式;
(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(1)计算:3tan30°;(2)解不等式组
已知直线(k>0)与双曲线(x>0)交于点M、N,且点N的横坐标为k. .
(1) 如图1,当k=1时.
①求m的值及线段MN的长;
②在y轴上是否是否存在点Q,使∠MQN=90°,若存在,请求出点Q的坐标;若不存在,请说明理由.
(2) 如图2,以MN为直径作⊙P,当⊙P与y轴相切时,求k值.
分式方程的解是_______________.