题目内容
解方程:(1)
(2)
如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD= .
![]()
如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是 .
![]()
在拼图游戏中,从图(1)的四张纸片中,任取两张纸片,能拼成“房子”如图(2)的概率为 .
![]()
已知等腰的底边长和腰长恰好是方程x2-6x+8=0的两根,则等腰三角形的周长为_________
查看答案当
=_______时,方程
是一元二次方程.
- 题型:解答题
- 难度:中等
某校开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的病况,从八年级的400名同学中选出20名同学统计了解各自家庭一个月的节水情况,见下表:
节水(m3) | 0.2 | 0.25 | 0.3 | 0.4 | 0.5 |
家庭数(个) | 2 | 4 | 6 | 7 | 1 |
分别求出这20个家庭节水的中位数和众数.请你估计这400名同学的家庭一个月节约用水的总量大约是多少m3?
130 【解析】试题分析:先根据中位数和众数的定义求出这组数据的中位数和众数,再计算出这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答. 试题解析:这20个家庭节水的中位数是第10个数和第11个数的平均数是0.3,众数是0.4; 20名同学各自家庭一个月平均节约用水是: (0.2×2+0.25×4+0.3×6+0.4×7+0.5×1)÷2...如图,△ABC和△ABD中,∠C=∠D=Rt∠,E是BC边上的中线.请你说明CE=DE的理由.
![]()
如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.
![]()
如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?
查看答案解不等式组:
,并把解集在数轴上表示出来.
![]()
点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=________.
查看答案 试题属性- 题型:解答题
- 难度:中等
用a、b、c作三角形的三边,其中不能构成直角三角形的是( )
A. a2=(b+c)(b﹣c) B. a:b:c=1:
:2
C. a=32,b=42,c=52 D. a=5,b=12,c=13
C 【解析】试题解析:∵a2=(b+c)(b﹣c), ∴a2=b2﹣c2 , ∴a2+c2=b2 , 根据勾股定理的逆定理可得,用a、b、c作三角形的三边,能构成直角三角形,故选项A错误; ∵a:b:c=1: :2, ∴设a=x,b=x,c=2x, ∵, ∴用a、b、c作三角形的三边,能构成直角三角形,故选项B错误; ∵a=32, b=42, ...如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )
![]()
A. (1)(2)(3) B. (1)(3)(4) C. (2)(3)(4) D. (1)(2)(4)
查看答案如图,PB⊥AB于B,PC⊥AC于C,且PB=PC,则△APB≌△APC的理由是( )
![]()
A. SAS B. ASA C. HL D. AAS
查看答案如图,在△ABC中,AB=AC=5,P是BC边上除B,C点外的任意一点,则代数式AP2+PB·PC等于 ( )
![]()
A. 25 B. 15 C. 20 D. 30
查看答案如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
![]()
A. x<-2 B. -2<x<-1 C. -2<x<0 D. -1<x<0
查看答案若直线y=3x+6与直线y=2x+4的交点坐标为(a , b),则解为
的方程组是( )
A.
B.
C.
D. ![]()
- 题型:单选题
- 难度:中等
阅读下面的材料,回答问题:
解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.
在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想,请利用上述方法解方程
![]()
商场某种商品平均每天可销售20件,每件盈利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?此时,每件衬衫盈利多少元?
(2)每件衬衫降价多少元,商场平均每天盈利最多?
查看答案如图,已知R t△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连结BD.
(1)若AB=3,BC=4,求边BD的长;
(2)取BC的中点E,连结ED,试证明ED与⊙O相切.
![]()
某校团委为积极参与“陶行知杯.全国书法大赛”现场决赛,向学校学生征集书画作品,今年3月份举行了“书画比赛”初赛,初赛成绩评定为A,B,C,D,E五个等级.该校七年级书法班全体学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题.
![]()
(1)该校七年级书法班共有 名学生;扇形统计图中C等级所对应扇形的圆心角等于 度,并补全条形统计图;
(2)A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生参加“陶行知杯.全国书法大赛”现场决赛,请你用列表法或画树状图的方法,求出恰好选到1名男生和1名女生的概率.
查看答案如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).
(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt△A′B′C′,并写出C′的坐标;
(2)求弧
的长.
![]()
解方程:(1)
(2)
- 题型:解答题
- 难度:中等
当
=_______时,方程
是一元二次方程.
如图所示,二次函数
的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①ac>0;②
;③a+c<2-b;④
; ⑤x=-5和x=7时函数值相等.其中正确的结论有 ( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案(2016重庆市)从﹣3,﹣1,
,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组
无解,且使关于x的分式方程
有整数解,那么这5个数中所有满足条件的a的值之和是( )
A. ﹣3 B. ﹣2 C. ﹣
D. ![]()
如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是( )
![]()
A. 正方形 B. 长方形 C. 菱形 D. 梯形
查看答案关于
的一元二次方程
有实数根,则
的取值范围是 ( )
A.
B.
C.
D. ![]()
如图,∠AOB=90°,∠B=30°,△A’OB’可以看作是由△AOB绕点O顺时针旋转角度得到的,若点A’在AB上,则旋转角![]()
的大小可以是()![]()
![]()
A. 30° B. 45° C. 60° D. 90°
查看答案 试题属性- 题型:填空题
- 难度:简单
如图,圆O是△ABC的外接圆,∠A=68°,则∠BOC的大小是( )
![]()
A. 22° B. 32° C. 136° D. 68°
C 【解析】∵O是△ABC的外接圆,∠A=68°, ∴∠BOC=2∠A=136°. 故选:C.用配方法解方程x2+6x+4=0,下列变形正确的是( )
A. (x+3)2=﹣4 B. (x﹣3)2=4 C. (x+3)2=5 D. (x+3)2=±![]()
下列事件中,属于必然事件的是( )
A.二次函数的图象是抛物线
B.任意一个一元二次方程都有实数根
C.三角形的外心在三角形的外部
D.投掷一枚均匀的硬币100次,正面朝上的次数为50次
查看答案下列图形中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D. ![]()
下列关于x的方程中,一定是一元二次方程的是( )
A. (m﹣3)x2﹣
x﹣2 B. k2x+5k+6=0; C.
x2﹣
x﹣
=0; D. 3x2+
﹣2=0
抛物线
的顶点坐标是( )
A. (3, 1) B. (3,-1) C. (-3, 1) D. (-3, -1)
查看答案 试题属性- 题型:单选题
- 难度:简单
在数轴上离开原点4个长度单位的点表示的数是 ________ 。
4或-4 【解析】试题解析:到原点距离相等的点有两个,左边一个右边一个,所以答案为4或是-4.已知代数式2a3bn+1与﹣3am﹣2b2是同类项,则2m+3n=________.
查看答案一列单项式:﹣x2 , 3x3 , ﹣5x4 , 7x5 , …,按此规律排列,则第7个单项式为________
查看答案若|m﹣3|+(n+2)2=0,则m+2n的值为 .
查看答案如图,AC⊥BC于点C,CD⊥AB于点D,其中长度能表示点到直线(或线段)的距离的线段有( )
![]()
A. 1条 B. 2条 C. 3条 D. 5条
查看答案在数轴上,点A表示的数是﹣5,点C表示的数是4,若AB=2BC,则点B在数轴上表示的数是( )
A. 1或13 B. 1 C. 9 D. ﹣2或10
查看答案 试题属性- 题型:填空题
- 难度:简单
在数轴上表示下列个数,并用“
”连接起来.(要求以
为单位长度画数轴)
,
,
,
,
,
.
计算:(
)
.
(
)
.
(
)
.
(
)
.
已知
是关于
的恒等式,则
__________.且
__________.
若
与
都是三次多项式,
是五次多项式,有下列说法:①
可能是六次多项式;②
一定是次数不高于三次的整式;③
一定五次多项式;④
一定是五次整式;⑤
可能是常数.其中正确的是__________.
已知有理数
,
满足:
,
且
,则
__________.
如图是一个摆放礼物的柜子截面的示意图,每一个转角都是直角,数据如图所示.则该图形的周长为__________.面积为__________.(用含
,
,
的代数式表示化简后的结果)
![]()
- 题型:解答题
- 难度:中等