题目内容
函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是( )
如图,已知二次函数y1=-x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b.
(1)求二次函数y1的解析式及点B的坐标;
(2)由图象写出满足y1<y2的自变量x的取值范围;
(3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.
如图,平面直角坐标系中,∠ABO=90°,将直角△AOB绕O点顺时针旋转,使点B落在x轴上的点B1处,点A落在A1处,若B点的坐标为(,),则点A1的坐标是( )
A.(3,-4) B.(4,-3) C.(5,-3) D.(3,-5)
小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:
(1)这次被调查的总人数是多少?
(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.
(3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.
若直线y=ax-b经过第一、二、四象限,则点P(a,b)在第 象限内.
下列计算正确的是( )
A.x2+x3=x5 B.x2•x3=x6 C.(x2)3=x5 D.x5÷x3=x2
已知关于x的方程x2-(k+1)x+k2+1=0的两根是一个矩形两邻边的长,且矩形的对角线长为,求k的值.
如图,小东用长3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为( )
A.12m B.10m C.8m D.7m
分式方程的解是 .