题目内容
11.解方程组(1)$\left\{\begin{array}{l}{x=y-1}\\{2x+y=4}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-2y=6}\\{2x+3y=19}\end{array}\right.$.
分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x=y-1①}\\{2x+y=4②}\end{array}\right.$,
把①代入②得:2y-2+y=4,即y=2,
把y=2代入①得:x=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x-2y=6①}\\{2x+3y=19②}\end{array}\right.$,
②-①×2得:7y=7,即y=1,
把y=1代入①得:x=8,
则方程组的解为$\left\{\begin{array}{l}{x=8}\\{y=1}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
13.已知$\frac{3}{x}$=$\frac{5}{y}$,则$\frac{{x}^{2}-xy+2{y}^{2}}{{x}^{2}-2xy}$的值为( )
| A. | -$\frac{44}{21}$ | B. | $\frac{8}{5}$ | C. | $\frac{44}{21}$ | D. | -$\frac{8}{5}$ |
2.下列等式变形正确的是( )
| A. | 由5x-7y=2,得-2-7y=5x | B. | 由6x-3=x+4,得6x-3=4+x | ||
| C. | 由8-x=x-5,得-x-x=-5-8 | D. | 由x+9=3x-1,得3x-1=x+9 |