题目内容

11.解方程组
(1)$\left\{\begin{array}{l}{x=y-1}\\{2x+y=4}\end{array}\right.$          
(2)$\left\{\begin{array}{l}{x-2y=6}\\{2x+3y=19}\end{array}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{x=y-1①}\\{2x+y=4②}\end{array}\right.$,
把①代入②得:2y-2+y=4,即y=2,
把y=2代入①得:x=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x-2y=6①}\\{2x+3y=19②}\end{array}\right.$,
②-①×2得:7y=7,即y=1,
把y=1代入①得:x=8,
则方程组的解为$\left\{\begin{array}{l}{x=8}\\{y=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网