题目内容

精英家教网已知:AE是△ABC的外接圆的直径,AD是△ABC的高
(1)求证:AC•AB=AE•AD;
(2)若AD=6,BD=8,CD=3,求直径AE.
分析:(1)即证AC:AE=AD:AB,证明它们所在的三角形相似.连接BE,则∠ABE=90°=∠ADC,∠E=∠D(同弧所对的圆周角相等).所以△ABE∽△ADC.问题得证;
(2)根据勾股定理可求AB、AC的长,运用(1)的结论求解.
解答:精英家教网(1)证明:连接BE.
∵AE是直径,AD⊥BC,
∴∠ABE=90°=∠ADC.
又∵∠E=∠C(同弧所对的圆周角相等),
∴△ABE∽△ADC.
AC
AE
=
AD
AB

∴AC•AB=AE•AD.

(2)解:∵AD=6,BD=8,CD=3,
∴AB=10,AC=3
5

∴10×3
5
=6×AE,
∴AE=5
5
点评:此题考查了相似三角形的判定和性质.证明线段的乘积相等,通常转换为比例式,证明线段所在的三角形相似.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网