题目内容
用适当方法解下列方程:
(1) ;
(2) 2(x+2)2-8=0;
(3);
(4)(5x-2)(x-7)=9(7-x).
如图,△ABC中,∠ACB=90°,∠B=30°,AC=1,过点C作CD1⊥AB于D1,过点D1作D1D2⊥BC于D2,过点D2作D2D3⊥AB于D3,则D2D3=________,这样继续作下去,线段DnDn+1=____________.
计算:(-+3-)÷(-)-23×87.6-23×12.4.
如图,在?ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为( )
A. B. C. π D. 2π
抛物线y=ax2与直线y=2x-3交于点(1,b).
(1)求a,b的值.
(2)抛物线y=ax2的图象上是否存在一点P,使其到两坐标轴的距离相等?若存在,求出点P的坐标;若不存在,请说明理由.
当ab>0时,y=与y=ax+b的图象大致是( ).
A.
B.
C.
D.
已知3是关于x的方程x2﹣(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )
A. 7 B. 10 C. 11 D. 10或11
如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=__________.
如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.
(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号);
(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC航行去营救船C,在去营救的途中有无触暗礁危险(参考数据: ≈1.41, ≈1.73)?