题目内容
如图,是一个正方体的表面展开图,那么原正方体中与“祝”字所在的面相对的面上标的字是( )
A.考 B.试 C.顺 D.利
计算:.
如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是( )
如图,已知∠1=∠2,∠AED=∠C,求证:△ABC∽△ADE
如图1,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与P运动的时间x(单位:秒),的函数关系的图象大致如图2所示,那么P的运动路线可能为( )
A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O
如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标;
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
如图,在阳光下某一时刻大树AB的影子落在墙DE上的C点,同时1.2 m的标杆影长3 m,已知CD=4m,BD=6 m,求大树的高度.
我校初一的学生要步行到20千米的郊外春游.(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时.前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.
(1)后队追上前队需要多长时间?
(2)后队追上前队时间内,联络员走的路程是多少?
(3)后队出发几小时后两队相距3千米?
如图,△ABC是等边三角形,D是BC的中点,点E在AC上,且AE=AD,则∠EDC= ( )
A.10° B.15° C.20° D.25°