题目内容
已知△ABC中,BC=26cm,AB、AC的垂直平分线分别交BC于E、F,则△EAF周长为____cm.
化简:﹣= .
已知△ABC中,AB=10cm,AC=12cm,AD为边BC上的中线,求中线AD的取值范围___.
(1)如图1,∠MAN=90°,射线AE在这个角的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.求证:△ABD≌△CAF;
(2)如图2,点B、C分别在∠MAN的边AM、AN上,点E、F都在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求证:△ABE≌△CAF;
(3)如图3,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ACF与△BDE的面积之和.
已知,如图,BC上有两点D、E,且BD=CE,AD=AE,∠1=∠2,求证:AB=AC.
如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=_________°.
在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC( )
A. 三条角平分线的交点 B. 三边垂直平分线的交点
C. 三条高的交点 D. 三条中线的交点
如图, 平分于点,点是射线上的一个动点,若,则的最小值为__________ .
如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2,C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.
(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△PAC为等边三角形,求m的值.