题目内容
【题目】如图,一条抛物线与
轴的交点为
、
两点,其顶点
在折线
上运动.若
、
、
的坐标分别为
、
、
、
,点
横坐标的最小值为
,则点
横坐标的最大值为________.
![]()
【答案】2
【解析】
抛物线在平移过程中形状没有发生变化,因此函数解析式的二次项系数在平移前后不会改变.首先,当点B横坐标取最小值时,函数的顶点在C点,根据待定系数法可确定抛物线的解析式;而点A横坐标取最大值时,抛物线的顶点应移动到E点,结合前面求出的二次项系数以及E点坐标可确定此时抛物线的解析式,进一步能求出此时点A的坐标,即点A的横坐标最大值.
由图知:当点B的横坐标为1时,抛物线顶点取C(-1,4),
设该抛物线的解析式为:y=a(x+1)2+4,
代入点B坐标,得0=a(1+1)2+4,
解得:a=-1,
即:B点横坐标取最小值时,抛物线的解析式为:y=-(x+1)2+4.
当A点横坐标取最大值时,抛物线顶点应取E(3,1),
则此时抛物线的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),
即与x轴的交点为(2,0)或(4,0)(舍去),
故点A的横坐标的最大值为2.
故答案是:2.
练习册系列答案
相关题目