题目内容
已知⊙O1与⊙O2相切,⊙O1的半径为3 cm,⊙O2的半径为2 cm,则O1O2的长是____.
一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
已知A=
(1)化简A;
(2)若x满足-1≤x<2,且x为整数,请选择一个适合的x值代入,求A的值.
81的算术平方根是( )
A.9 B.±9 C.3 D.±3
如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C.解答下列问题:
(1)根据A点坐标建立平面直角坐标系;
(2)将⊙A向左平移____________个单位长度与y轴首次相切,得到⊙A?,并画出⊙A?.此时点A?的坐标为_____________.
(3)求BC的长.
如图,边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB′C′D′,两图叠成一个“蝶形风筝”(如图所示阴影部分),则这个风筝的面积是( )
A.2 B. C.2- D. 2-
下列计算中正确的是( )
A.
B.
C.(a+b)2=a2+b2
D.a2 ·a3=a 6
口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .
如图,已知抛物线经过点A(2,0),B(3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A,O,D,E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上第二象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.