题目内容
如图,AD,BE分别是△ABC的中线和角平分线,AD⊥BE于点G,AD=BE=6,求AC的长.
如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
求证:①AB=AD;
②CD平分∠ACE.
【答案】详见解析.
【解析】(1)∵AD∥BE,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD;
(2)∵AD∥BE,
∴∠ADC=∠DCE,
由①知AB=AD,
又∵AB=AC,
∴AC=AD,
∴∠ACD=∠ADC,
∴∠ACD=∠DCE,
∴CD平分∠ACE;
点睛:角平分线问题的辅助线添加及其解题模型.
①垂两边:如图(1),已知平分,过点作, ,则.
②截两边:如图(2),已知平分,点 上,在上截取,则≌.
③角平分线+平行线→等腰三角形:
如图(3),已知平分, ,则;
如图(4),已知平分, ,则.
(1) (2) (3) (4)
④三线合一(利用角平分线+垂线→等腰三角形):
如图(5),已知平分,且,则, .
(5)
【题型】解答题【结束】26
如图①,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.
(1)求证:AC平分∠DAB;
(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;
(3)如图②,连接OD交AC于点G,若,求sinE的值.
(1)已知x=﹣3是关于x的方程2k﹣x﹣k(x+4)=5的解,求k的值;
(2)在(1)的条件下,已知线段AB=12cm,点C是直线AB上一点,且BC=k•AC,若点D是AC的中点,求线段CD的长.
计算: ___________.
下列各式计算正确的是( )
A. 2ab+3ab=5ab B.
C. D.
两块等腰直角三角形纸片AOB和COD按图①所示放置,直角顶点重合在点O处,AB=25.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图②所示.
(1)在图②中,求证:AC=BD,且AC⊥BD;
(2)当BD与CD在同一直线上(如图③)时,若AC=7,求CD的长.
如图,Rt△ABC中,AC=5,BC=12,则其内部五个小直角三角形的周长之和为________.
.下列说法正确的是( )
A. 平移不改变图形的形状和大小,而旋转改变图形的形状和大小
B. 平移和旋转都不改变图形的形状和大小
C. 图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D. 在平移和旋转图形的过程中,对应角相等,对应线段相等且平行
下列说法中正确的是( )
①互为补角的两个角可以都是锐角;②互为补角的两个角可以都是直角;
③互为补角的两个角可以都是钝角;④互为补角的两个角之和是180°.
A. ①② B. ②③ C. ①④ D. ②④